PPMS®

Physical Measurement Property System

Product Description

The Quantum Design PPMS represents a unique concept in laboratory equipment: an open architecture, variable temperature-field system, designed to perform a variety of automated measurements. Available measurement options include all required hardware and electronics to immediately begin collecting publication-quality data, while the system is also easily adapted to custom user experiments. Sample environment controls include fields up to ± 16 T and a temperature range of 1.9 to 400 K. The expandable design enables combining many features in one instrument to make the PPMS the most versatile system of its kind.

Features

- Compatible with more than 20 Quantum
 Design Measurement Options which seamlessly integrate with the MultiVu software environment
- Versatile sample mounts couple easily to the 12 electrical leads built into the cryostat insert for consistently reliable electrical access
- Software controls for the temperature and magnetic field readily enable the automation of complex data acquisition procedures
- The included Model 6000, a sophisticated microprocessor-controlled device, eliminates the need to use or purchase external bridges, current sources, or voltage sources for basic system operation
- Sample chamber has 2.6 cm diameter to accommodate custom probes
- Interface with external 3rd party instruments, whether controlling these from within MultiVu or directing the PPMS from external software, such as NI LabVIEW or Python.

PPMS with optional liquid nitrogen-jacketed helium dewar

Magnet Configurations

- Select from 9 T, 14 T, or 16 T longitudinal solenoid magnet configurations
- Systems may also be ordered without any installed magnet

Available Measurement Options

• Electrical Transport:

AC Resistance (ETO); DC Resistance; Horizontal Rotator; Pressure Cell (Transport); van der Pauw-Hall

· Magnetometry:

VSM + Large Bore; VSM Oven; AC Susceptibility (ACMS II); FORC Software; Fiber Optic Sample Holder (FOSH); Pressure Cell (Magnetometry); Torque Magnetometer

• Thermal Measurements:

Heat Capacity; Thermal Transport (TTO); Dilatometer

• Sub-Kelvin Capabilities:

Dilution Refrigerator; Helium-3 Refrigerator; Adiabatic Demagnetization Refrigerator (ADR); Sub-Kelvin Measurement Options (AC Resistance, DC Resistance, Heat Capacity, AC Susceptibility)

• Multi-Function Probes (MFPs):

User-designed experiments using MFPs; Suitable for user-designed experiments Chip carriers: LCC (48 and 20 connections) and DIP (16 connections) variants available

• FMR Spectroscopy:

Broadband (2-40 GHz) CryoFMR

• Optics:

Optical Multi-Function Probe; Photoconductivity MFP; Light Sources

10307 Pacific Center Court, San Diego, CA 92121 Tel: 858.481.4400 Fax: 858.481.7410 **www.qdusa.com** 1070-002 Rev. C1

Specifications

Temperature Range: 1.9 to 400 K

Temperature Stability: \pm 0.2% (T < 20 K),

 \pm 0.02% (T > 20 K); (typical)

Temperature Accuracy: ± 1%

Temperature Sweep Rate: 6 K/min. cooling,

10 K/min. warming; (typical)

Cool Down Time: 40 minutes (typical time to stable

1.9 K from 300 K)

Field Range: \pm 9 T, \pm 14 T, \pm 16 T

Field Uniformity*: 9 T: \pm 0.01% over 5.5 cm on-axis

14 T: \pm 0.1% over 5.5 cm on-axis 16 T: \pm 0.1% over 1.0 cm on-axis

Max Field Charging Rate: 9 T: 190 Oe/s (> 1 T/min.)

14 T: 100 Oe/s (≈1 T/min.) 16 T: 160 Oe/s (≈1 T/min.)

Min Field Charging Rate: 0.1 Oe/s
High Vacuum (optional) < 0.1 mTorr

*Uniformity range is centered 4.05 cm above the surface of a standard transport puck; this point represents the center of an installed VSM coil set. Specifications subject to change without notice