

Dilution Refrigerator

DynaCool (D850) / PPMS (P850)*

The dilution refrigerator insert for the PPMS® enables access to a temperature range spanning 4 K all the way down to 50 mK for a number of compatible measurement options and custom user experiments. Software-automated gas handling of both evaporative and dilution cooling modes enables fast and responsive control across three decades of temperature and enables access to the lowest base temperature possible in a PPMS.

Key Features

- Software user interface for temperature control is identical to that of the base PPMS, as are sequence commands - all gas handling operations for dilution and evaporative cooling modes are fully automated
- Closed-cycle gas handling loop pre-filled with proper ³He/⁴He mixture ratio
- Automated maintenance wizards for storing and cleaning cooling mixture to maintain system performance
- Compatible measurement options: AC/DC electrical transport, heat capacity, AC susceptibility

Dilution Refrigerator Specifications

Temperature Control

Range:	
Accuracy*:	

Cooling Power:

Stability:

20

60

80

100

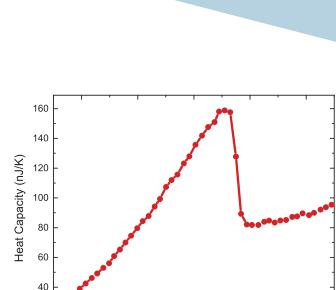
Temperature (mK)

120

140

Operational Capabilities

Space for User Experiments:


Operational Range:

Cool Down Time (300 K to 50 mK):

50 mK to 4 K \pm 10%, for T = 50 mK \pm 2%, for T = 300 mK \pm 1%, for T = 4 K \pm 0.2% or better

 $0.25\,\mu\mathrm{W}$ at sample stage at 100 mK Less than 8 hours; 5 hours typical 0.88" (22 mm) diameter by 1.4" (35 mm) long cylindrical volume 0.05 to 4 K; 0 to 16 T

*Quoted up to the maximum field of the PPMS. Specifications are subject to change without notice.

Zero-field heat capacity data depicting the superconducting transition in Ir_{0.8}Ru_{0.2} occurring near the base temperature of the Dilution Refrigerator. Sample provided by Milton S. Torikachvili of San Diego State University.

Dilution Refrigerator with Transport Puck