### Quantum Design



## MPMS Application Note 1014-212

# Setting Small Fields Using the AC Option or the Ultra Low Field Option

### **Setting Small DC Fields Using the AC Option**

With the AC option, use the MPMS to set small DC fields by setting a small DC current to the AC primary coil. The maximum field that can be set using the AC electronics is dependent on the B/I ratio of the AC primary coil. This B/I ratio is presented to the user as a system specific calibration factor, **Coil Cal 2.** 

To determine the maximum DC field that can be applied for your system, multiply the **Coil Cal 2** factor by  $\pm$  100 mA (the output range). Typical **Coil Cal 2** factors for 1 Tesla, 5 Tesla, and 7 Tesla systems are 61 G/Amp, 45 G/Amp, and 80 G/Amp, respectively.

For example, for a 1 Tesla system with a **Coil Cal 2** factor of 61 G/Amp, DC fields of up to about 6 Gauss with resolution of about 0.19 mG can be set. For increased resolution, set the electronics in high-resolution mode, which sets DC fields of up to 60 mG (for a 1 Tesla system) with a resolution of approximately 0.0019 mG.

#### Using the AC Electronics to Set Small DC Fields

The small DC field is set by loading a bit count into the 16-bit DAC, feeding a buffer that, in turn, drives the AC primary coil. The output range is  $\pm$  100 mA with a resolution of approximately 0.00305 mA.

The following GPIB commands will prepare the system for setting small DC fields:

- 1. Activate Coil Relay (**ACR 1**) This sets the electronics into high-resolution mode, which increases the resolution to about 0.0019mG, but limits the maximum current to ±1 mA.
- 2. Activate Range Relay (**ARR 0**) This sets the AC drive electronics in low-resolution mode.
- 3. FIFO Reset (**FRS 1 1 count**) This count represents the count loaded into the drive DAC and can range from 0 (-100 mA) to 65535 (+100 mA), 32768 corresponds to 0 output current.
- 4. Output FIFO Enable (OFE 1)

Once the above commands are issued, it is only necessary to send the **FRS 1 1 count** command to adjust the output current. To turn off the AC electronics, issue the command **ACR 0**.

**Note**: If you have installed the External Device Control (EDC) software, you can use an EDC program to send the commands. The EDC program simplifies system setup for small DC field sweeps; you send only a series of **FRS 1 1 counts** and measure commands to the Model 1822.

### **Setting Small DC Fields Using the Ultra Low Field Option**

With the Ultra Low Field (ULF) option, use the MPMS to set small DC fields by setting a small DC current in the copper coil located inside the DC magnet. The maximum field that can be set using ULF is dependent on the B/I ratio of the ULF primary coil. This B/I ratio is presented to the user as a system specific calibration factor, **Coil Cal 2.** 

To determine the maximum DC field that can be applied for your system using ULF, multiply the **Coil Cal 2** factor by  $\pm$  50 mA (the output range). Typical **Coil Cal 2** factors for 1 Tesla, 5 Tesla, and 7 Tesla systems are 61 G/Amp, 45 G/Amp, and 80 G/Amp, respectively.

For example, for a 1 Tesla system with a **Coil Cal 2** factor of 61 G/Amp, DC fields of up to about 3 Gauss with resolution of about 0.092 mG can be set. For increased resolution, set the electronics in high-resolution mode, which sets DC fields of up to 30 mG (for a 1 Tesla system) with a resolution of approximately 0.00109 mG.

#### Using the Ultra-Low Field Option to Set Small DC Fields

The small DC field is set by loading a bit count into the 16-bit DAC, feeding a buffer that, in turn, drives the copper coil. The output range is  $\pm$  50 mA with a resolution of approximately 0.0015 mA.

The following GPIB commands will prepare the system for setting small DC fields:

- 1. Set Coil Relay (**SCR 1**) This sets the electronics into high-resolution mode, which increases the resolution to about .0009 mG, but limits the maximum current to ±0.5 mA.
- 2. Set Coil Gain (SCG 0) This sets the AC drive electronics in low-resolution mode.
- 3. Set Coil Current (SCC #) Where # is the amount of current to be sent to the copper coil (in mA).

Once the above commands are issued, it is only necessary to send the SCC # command to adjust the output current. To turn off the ULF electronics, issue the command SCR 0.

**Note:** If you have installed the External Device Control (EDC) software, you can use an EDC program to send the commands. The EDC program simplifies system setup for small DC field sweeps; you send only a series of **SCC** # and measure commands to the Model 1822.