


AC Resistance (ETO)

DynaCool (D605) / PPMS (P605) / VersaLab (V605)

The Electrical Transport Option (ETO) leverages a digital lock-in technique to measure resistance in a traditional Kelvin sensing (4-probe) configuration across a wide dynamic range; this is extended further by the special 2-probe high-impedance mode for a total range spanning nearly fifteen full decades. The two modes feature 8 M Ω of overlap so data can be normalized for a complete curve across both ranges. Additional functions like I-V curve profiling and differential resistance measurements extend the utility of the ETO to non-ohmic materials as well as device characterization and screening.

Key Features:

- Simultaneous measurement of resistance on up to two channels with phase angle and quadrature voltage reported for diagnostics
- Pre-selected frequencies for channels 1 and 2 prevent cross-talk and maximize signal-to-noise
- Two measurement modes: current sourced in standard 4-probe configuration; voltage sourced in high-impedance 2-probe configuration
- I-V curve collection can be used to screen for ohmic contacts
- Preamp is mounted as close to the electrical access point of the PPMS as possible to minimize degradation of small signals occurring before amplification

Temperature dependence of the resistance of a magnetite ($F_{\rm e}3O_4$) mineral sample. The high-resistance data is collected using the 2-probe (high impedance) mode, while the rest of the range is covered by the more conventional 4-probe configuration for increased sensitivity. Note that the Verwey transition can be resolved near 120 K.

Electrical Transport (ETO) Specifications (for zero-field)

(Values refer to the standard 4-probe configuration unless otherwise noted)

Resistance [R]

Excitation Mode: AC

Range: $10 \mu\Omega$ to $10 M\Omega$

 $2 M\Omega$ to $5 G\Omega$ (high-impedance 2-probe)

Accuracy*: \pm 0.1% typical, \pm 0.2% maximum; R < 200 k Ω

 \pm 0.2% typical; R \approx 1 M Ω

 \pm 2.0% typical; R < 1 GO (high-impedance) \pm 5.0% typical; R = 5 GO (high-impedance)

Sensitivity: $10 \text{ n}\Omega \text{ RMS typical}$

Drive Parameters

Frequency Range: 0.1 to 200 Hz (nominal)

Current Amplitude

Range**: 10 nA to 100 mA

Current Amplitude

Accuracy: \pm 0.4%, 100 nA drive; improves for larger

amplitudes

Voltage Amplitude

Range: 10 mV to 10 V (high-impedance 2-probe)

Operational Range 1.8 to 400 K; 0 to 16 T

- *Accuracy specification depends on sourced current and selected preamp range; stated values describe typical performance for a majority of possible measurement configurations.
- **Stated available current range applies to operation at temperatures of 1.8 K and above.

Specifications are subject to change without notice.

